Architecting Data Warehouses for Flexibility,
Maintainability, and Performance

Rob DuMoulin
Encore Development

Introduction

Data Warehouse DBAs, Data Administrators, Data Modelers and System Architects all realize the difficulty of
designing data warehouses for both data loading and query response performance. Unfortunately, these two
optimization strategies are mutually exclusive. Normalized transaction-oriented systems may ensure data |oading
performance and data integrity but are inherently slower at performing analytical queries. On the other hand, de-
normalization and warehouse index strategies improve query performance but incur the penalty during data
loading. Even when a proper balance between load and query performance is achieved, consideration must be
given to how efficient the design will be as the data warehouse growsin size, complexity, and usage. In order to
achieve the perfect balance between query performance and an ever-shrinking maintenance window, both the
DBA and Data Administrator must share a common understanding of the complete life cycle of warehouse
information. This paper identifies warehouse business issues and provides design solutions that ensure continued
performance, flexibility, and maintainability of your warehouse system. The paper also discusses subtleties of
dimensional modeling, data migration issues, and tuning strategies. The overall design priority stressed is query
performance. The challengeisto architect the data warehouse and loading procedures to offset performance
penalties inherent to loading a de-normalized design. Identifying business requirementsis critical to the success
of adatawarehouse project, but is out of the scope of this paper. It isassumed that athorough business
requirement analysis has been completed and that the granularity, source system mapping, and attribute definitions
satisfy the business needs.

What's in an Architecture?

If asked the question, “Which is better, On-Line Transaction Processing (OLTP) or On-Line Analytical Processing
(OLAP)” would your response be “OLTP”, “OLAP”, “Neither”, or “Both”? The most accurate answer is all of the
above, depending on your business perspective. OLTP and OLAP are each designed to support different business
requirements. OLTP systems record business transactions and are designed for data load performance and data
integrity. OLAP systems are designed for reporting flexibility and query performance. Trying to design a single
system to perform both roles is destined to fail.

OLAP architectures range from fullyeRational OLAP(ROLAP) to fully Multi-dimensional (MOLAP). A htbrid

mix between ROLAP and MOLAP is called HOLAP. Of the three architectures, each has strengths, weaknesses,
and scalability limitations that must be understood when determining the appropriate solution for business
requirements. In general, ROLAP is suited for larger-scale data warehouses where rapid query response time is
not required but large volumes of sparse data are expected. MOLAP is best suited for more focused data mart
reporting where quick response time is critical to the business and levels of aggregation are restricted. HOLAP
architecture can exist anywhere between the ROLAP and MOLAP architecture, depending on business
requirements. Performance in HOLAP architecture is dependent on the whether the requested information is
among the pre-aggregated data or not. The focus of this paper is the enterprise-scale data warehouse consisting o
multiple OLTP systems feeding a ROLAP dimensional data warehouse. In this scenario, MOLAP, ROLAP, or
HOLAP data marts can be created from the dimensional data warehouse to satisfy particular business needs. Be

Paper 322 / Page 1

aware that choosing the wrong architecture for the right reporting requirements may lead to poor performance,
inability to scale, or underachieving business objectives. Any of those situations can result in afailed data
warehouse.

The Dimensional Data Model

The Dimensional Data Model was popularized in Ralph Kimball's books The Data Warehouse(Jobikit

Wiley and Sons, Inc 1996) and The Data Warehouse Lifecycle T@adkinh Wiley and Sons, Inc. 1998) and many
published articles. A dimensional model is a ROLAP data warehouse design that optimizes reporting flexibility
and query performance. Fundamentally, the dimensional philosophy in this paper is based on the same modeling
technigues written and taught by Mr. Kimball. This paper extends those modeling concepts to handle various
business situations.

A dimensional data model reflects business processes rather than available business information. When you hear
of data warehouses needing redesign because business systems change, those warehouses were designed aroun
available business information and not to support business processes. Dimensional architecture separates
attributes into either normalized Business Measurements (Facts) or de-normalized Analysis Qualifiers
(Dimensions). Facts are grouped according to analytical value, business need, and level of aggregation. Examples
of a “Point of Sale” Fact group would include Gross Profit, Unit Price, and Quantity Purchased. Dimension tables
are typically groupings of descriptive attributes de-normalized to increase performance. Since the growth and

large volume occurs in Fact tables, additional space needed for de-normalized dimensions is usually insignificant.
Examples of Dimensions groups include Time, Customer, Store, and Product. This architecture is referred to as a
“Star Schema” because Dimension tables connect to centralized Fact tables much like points of a star. Stars, like
the one shown in Figure 1, are scalable designs providing flexibility and drill-down capabilities that is inefficient

in normalized designs.

Product

Product WK

Product_ NK

Current_Record_Flag
Customer Effective_Start_Date

Customer_ WK Effective_End Date

Customer_NK SKU

Description

Unit_ Weight

Current_Record_Flag
Effective_Start_Date
Effective_End_Date Unit_Weight_Measure_Units
Customer_Class Unit_Price
Payment_Method Unit_Cost

Invoice Method Manufacturer_Name

Terms Units Per_Retail_Case
Credit_Grade Units_Per_Shipping_Cas

Customer_Address Department

Category

Customer_City

» Subcatenory
Customer_Siate
Customer_Zi Store_Inv_Reorder_Qty

zp Point of Sde Dist_Inv_ Reorder Qiy
o oy Purches Store Reorder_Lead Days

- Dist_Reorder_Lead_Days
Unit_Cost_Dollars Load Date ~ - d
Tax Paid_Dollars -
t Dallars

Store Payment_Method

Store_ WK Discount_Pet
Store NK Discount_Dallars e
Current_Record_Flag Load Date
Effective_Start_Date Time_WK
Effective_End Date Calendar_Date
Store_Nurmber mo::,gfa’ze
Store_Name onth_Of_Y ear
Store_Street_Address m;‘(hgﬂzdl
Store Ci _Of_Year
e oy Wesk_Of_Quarter

Store State
Store_Zip
County
Region Day e
o Day_Of_Year
Store_Type / Of
Manager_Name D e
Store_Phone_Number
Store_Fax_Number
Population_WI_5_Miles Season_Name

On_Major_Highway_Fla
Mail_Address Calendar_Quarter

Mail_Ci -
Ma,fgf.}e Quarter_Overall
Wl Zp ek Ho
Load Date B V;tqn
Special_E t_Fag

Figure 1. Star Schema With Snowflakes

Fact measurements can be constrained on any dimensional attributes and hierarchies, giving the warehouse
flexibility. The more dimension attributes and hierarchies there are, the more flexible the reporting can be. A Star

Paper 322 / Page 2

derivation, called snowflake, occurs when dimension attributes are normalized into parent-child tables.
Snowflakes are sometimes used when two indirectly related dimensions share attributes at different levels or when
referential integrity isdesired. Snowflakes are shown as three lookup tables |eft of the Store dimension in Figure
1. OLTP modeling instinct causes first-time dimensional modelers to either classify dimension attributes as facts
or blindly normalize dimensions into snowflakes.

The primary reason to avoid snowflakes in data warehousesis query performance. Small-scale data warehouses
may not notice decreased query performance; however, degradation increases dramatically as dimensions and
snowflakes grow in size. During the design phase, it is critical to remember that implementing snowflakes to save
spaceis hardly ever worth the performance penalty. The amount of space saved is not significant unless
dimensions performance is affected due to dimension size. So when are snowflakes acceptable? The author
recommends using a derivation of snowflakes whenever lookup code referential integrity (RI) isdesired or
whenever the text defining alookup codeis not available at load time. This derivation involves duplicating
snowflake attributes within the dimension entity. These attributes are populated at |oad time so queries never
need join to the snowflake table, making query response times optimal. If the Rl is validated during a data staging
process, the integrity constraint between Dimension and snowflake may be removed.

If multiple dimensions reference a snowflake table, the snowflake should be maintained independently.

Maintaining snowflake tables separately simplifies the load process of each referring “child” dimension because
the stage records only need the snowflake key. The other extreme to maintaining snowflakes is to include all
snowflake attributes within the dimension load record. The load process queries the snowflake for the exact
permutation of its attributes. If the snowflake lookup determines an exact record does not exist, a new record is
added to the snowflake and the attributes are entered into the dimension record. If the record is found, business
rules determine how snowflake changes are handled. This second approach makes the snowflake self-maintaining
but one cannot enforce referential integrity of the load because a match is always guaranteed. The concept of
utilizing reference and self-maintaining tables is expanded on later in this section.

The remainder of this paper refers to key fields within a data warehouse as either “Natural Keys” or “Warehouse
Keys”. Source system primary keys are collectively referred to as the Natural Keys of the dimension. Natural

Keys identify uniqueness in source system data at a specific point in time but are rarely primary keys in the
warehouse because Natural Keys are not necessarily unique. Natural Keys can be combined with versions keys or
effective dates to provide uniqueness. The more common approach is to utilize a sequence-generated Warehouse
Key to represent the combination of Natural Key and version.

Mr. Kimball identifies three distinct types of dimensions (known by dimensional modelers as “Type-1", “Type-2”,
and “Type-3") based on how the dimension will represent history. Three other dimension types: “Profile”,
“Lookup”, and “Reference” are added to Mr. Kimball's dimension types to satisfy most business applications.

Type-1 Dimensions

Type One dimensions are applied to dimensional business entities where only the current state of the dimension is
relevant. Changes to attributes in a Type One dimension are implemented as UPDATE statements and no history
is maintained. At first, business users may think that a Type One dimension fits their business model because they
do not fully understand its consequences. Consider an historic report summarizing sales by month based on
customer zip codes within a Type One Customer dimension. Any report based on customer zip codes would be
inconsistent every time a Type One customer changes postal regions. A report for January 1999 that is run in
February 1999 may not report the same sales numbers as a January 1999 report run in September or even March
1999. Changing history is against the Laws of Physics and should be against the Laws of Data Warehousing
unless specific business rules require it.

Paper 322 / Page 3

Type-2 Dimensions

Type Two dimensions contain a separate record for distinct attribute combination of the Natural Key. All versions
of adimensional object are saved within the data warehouse by generating a sequential number (Warehouse Key)
each time anew version of the Natural Key isadded. This approach ensures that fact entries relate to time-
consistent dimensional references. If dimensional properties change quickly over time, it may be necessary to
separate dynamic attributes from more static ones (a possible candidate for Profile Dimensions that will be
discussed soon).

Type-3 Dimensions

Type Three dimensions handle changes by adding attributes within each record to indicate the previous,
minimum, maximum, or original values (based on businessrules). The limitation of this approach isthe inability
to reconstruct history and the loss of potentially valuable information when the versions exceed the fixed number
of historical values. Thisauthor has never seen a pure business requirement for Type Three dimensions, but has
utilized a hybrid Type Two and Type Three approach simply to increase performance.

Profile Dimensions

Profile dimensions are Type Two dimensions where all columns except the Warehouse Key are Natural Keys.
Thisdimension typeis typically used to group flags or finite-set attributes that classify or profile an object or state

of an abject. An example of aProfile dimension iseight (8) single-character flags whose domain are “Y”, “N”, or
NULL. The maximum number of records in this dimension would®per3561. Collectively, these flags
represent a status or state of conditions. With a little coding, Profile dimension can be made self-sufficient by
automatically populating entries only when asked for a combination that is not already in the dimension. If the
maximum number is small or auto-loading is not an option, simply pre-populate the Profile dimension with all
possible values prior to loading the data warehouse.

Lookup Dimensions

Lookup Dimensions contain attributes that represent static business characteristics. These dimensions do not have
a business requirement to represent unknown or missing data conditions, thus Natural Keys are usually the

Lookup Dimension Primary Key. Such dimensions are typically small and static in nature and won’t require an
automated process to maintain them. Examples of lookup dimensions are state abbreviation codes supplied by the
United States Postal Service or the names of Business Units within an organization.

Reference Dimensions

Reference Dimensions are similar to Lookup Dimensions, except they contain more records and may or may not
be automatically maintained. These dimensions contain a Warehouse Key because they must represent “Missing”
or “Invalid” dimensional entries. “Missing” and “Invalid” dimensional entries are used when fact records

reference incomplete or incorrect information. An examples of a Reference Dimensions is a Calendar Dimension
which is populated one time, but must support error handling when source data is missing or corrupt.

Depending on loading and query requirements, several columns can be added to fact and dimension table to
improve flexibility and performance. All fact and dimension tables should contain a record entry and post date
attributes that will enable a data load to be backed out if needed. Type two dimensions should contain columns
that define an effective begin and end timestamp, and a flag that identifies records as current or historical.

Effective dating can be used to reconstruct the status or statuses of a dimensional entity over time. Remember tha
only the Warehouse Key is carried into a fact table. The Warehouse Key ensures each fact record contains a time-
consistent dimensional reference but in itself does not supply the state of a dimension at a specific point in time.

To accomplish point-in-time analysis requires both an effective begin date and the end user to structure the query

Paper 322 / Page 4

to return the maximum effective date that is less than a particular point in time. Maintaining an indexed current
version indicator flag allows current versions to be identified without performing index range scan operations (an
index on the Natural Key and current version flag is still not unique since there can be multiple records that are not
current).

The last design consideration supports specific analyses without involving afact table. This approach iscalled
Dimensional Browsing and is available when all the information to answer a question resides within dimension
tables. Consider adata model containing a Sales Representative and a Customer dimension with aneed to support
abusiness question such as:

How often are salesrepresentatives responsible for customers outside of their district?

Answering this business question would involve joining the Customers and Sales Representatives dimensions

through a sales fact table for unique sales representative and customer relationships, even though no fact-table

attributes are needed. This analysis could be supported without involving the fact table by creating a combined

(a.k.a. “Mini”) dimension of customer and sales representative attributes. While creating such a combined
dimension must include the fact table, the query is performed only once (or each time the dimension is updated)
and the Mini Dimension is much smaller because it contains only distinct combinations.

The Loading Process

The most challenging aspect of data warehouse development is loading data. Since business information typically
exists on multiple non-integrated operational systems, information must be consolidated into a single point of
record. The challenge lies in identifying the best source of record, standardizing codes and formats, handling data
anomalies, and identifying data quality issues.

Flexibility

A fundamental concept that greatly simplifies data warehouse projects and ongoing maintenance is the use of data
staging areas. Upon completion of the logical database design, data modelers have a good idea of the attributes
and sources needed to populate the warehouse. At that time, a data staging area can be defined that will serve as
dividing line between source systems and the warehouse. Stage should contain only the information needed to
populate the warehouse and be organized to logically group information by type, not source system format. If a
source record contains customer dimension and fact attributes, the source record should be split into two extracts
instead of having a single stage table feed both the dimension and fact tables. Source system experts can begin to
map the data in the source systems to this specification before the physical data warehouse is created. As the
design becomes physical, warehouse architects map attributes from Stage to the production warehouse. Notice
that the two processes are performed independently of each other. This allows the source systems or the
warehouse design to change without affecting processes or programs on the other side of the data stream.

Stage rarely contains indexes or constraints. Since the load processes from Stage are full table scans and the data
presumably has integrity within the source system, indexes and constraints are unnecessary performance drains.
Transformations occur during extraction and business rules are applied during the stage to the production
warehouse load. Naturally, there may be exceptions to these rules but the overall goal should be to maximize data
throughput.

Do not be tempted to pre-assign warehouse keys during source system extraction or stage area loading, as some
keys may change based on load sequence. Dimension references from fact tables are very time dependent. If
dimension keys are assigned prior to fact table loading, any dimension table updates that occur prior to the fact
load may invalidate the dimension.

Paper 322 / Page 5

Source system extracts should be written with the sole purpose of populating the Data Warehouse Stage area.

Network traffic and the data-loading window can be significantly affected if extracts contain more rows or

columns than necessary to satisfy stage requirements. The source system extract is also the most logical place to

imbed business rules that apply only to a particular system. Standardizing a gender code that is “M” or “F” in one
system, “0” or “1” in another, and “Male” or “Female” in a third system should be done during each extract
process. The Extract Specification document should set the standard format.

Maintainability

Standardizing load processes reduces the overall development and maintenance effort. Determine the business
rules necessary to handle the consolidation, transformation, and loading of each warehouse table prior to
implementing any. Loading processes will be similar for objects that possess the same functional qualities (like all
Profile Dimensions).

Sequence-Generated Warehouse Keys are the primary keys of Type Two Slowly Changing Dimensions and Profile
Dimensions. The dimension loading process first checks if the Natural Keys exist in the dimension and the record
is loaded if the Natural Keys are not found. If Natural Keys do exist and any other record attribute changed (Type
Two dimensions only), a new entry must be created to represent that record version. Lastly, if the Natural Keys
exist but no attributes have changed, the record is a duplicate and is discarded. Profile Dimension load process is
illustrated in Figure 2 and Type Two Dimension load process is illustrated in Figure 3.

Select WK o| WasWK Generate a

FNO for NKs Found? No new WK

Natural | Are All NKs ‘ +
Keys il Null?
Yes

Insert New
\—Yes—b S(y?/|t|¥vs}<|[\l|%? Record With
WK & NKs

Figure 2. Profile Dimension Loading Process

Loop *
N No
ext Change Insert N_ew
Stage New Production
Record Production ‘ Record
Record Compare
\ Iy Currentto | Generate
New Prod. Change—»- New WK
Translate Copy Into Rec
NKs into » Production L
WKs Record Fmt.
Update
A Current
Use Record as
Current Get Current Not Current
Lookups To
) Warehouse ———— Based on
Validate & Record NKs
Add
Descriptions

Figure 3. Type Two Dimension Loading Process

Fact table loading is more straightforward than Dimension table loading. Staged fact table records are only aware
of dimension Natural Keys, not dimension Warehouse Keys. Natural Keys for each Profile or Type Two
dimension must be translated into Warehouse Keys at load time. Figure 4 illustrates a fact table load process.

Paper 322 / Page 6

Yes
| v

Use
Is Load Out
Lookups To
No—m e uc::nce7 Abort Load Validate &
q ‘ Add
Is This A No Descriptions
Stage >
Failed Load
Records
Recovery?
A L %‘Zrce(?rz;d Copy to Translate
Yes—m » Prod Rec ——®| Production NKs into
Already
Fmt WKs
Processed
h J
(@t New
Loop for all Stage Records Production

Record

Figure 4. Fact Table Loading Process
Loading Issues

Dataquality of an OLTP systemistypically as good as it needsto be, but hardly ever better. Even if source
systems enforce referentia integrity, they may not ensure the parent record is still avalid record. For example,
over afive-year period, aDistribution Center Clerk at atransportation company entered the same equipment code
whenever products were moved around the facility. When history was loaded into a data warehouse, it became
obvious that asingle piece of equipment was responsible for all product movements for the past five years. The
particular equipment was replaced four and one half years prior. When asked, the Distribution Center Clerk stated
that the data entry screen accepted the default code so the clerk never had areason to enter a correct one. This
particular data quality issue made it impossible for that distribution center to analyze equipment maintenance
trends. The warehouse, however, was very effective at identifying the data quality problem. The data input
screen was fixed within two weeks.

One key issue that requires both a business decision and a method of implementing is handling of missing or

incomplete information. What happens if a sales record refers to an unknown customer or if the customer key is

NULL? Remember that during afact table load, the source-system fact record only contains the Natural Key for a
customer (i.e. SSN). The customer Natural Key must be converted to a customer Warehouse Key if the customer
dimension is a Type Two slowly changing dimension. Missing and incorrect information are symptoms of two

distinct problems and each are handled differently. If the customer reference is not found in the customer

dimension but is NOT NULL, then there are either data quality problems or a breakdown in the loading process.

To the data warehouse, this customer is “Invalid”. If a NULL Customer Natural Key is passed in, this indicates
that the source system did not provide a value. To the data warehouse, this customer is “Missing.”

If a dimension reference is deemed “Invalid” during fact table load, three options are available. The first and
easiest approach is to discard the fact record. The advantage of this approach is ensuring only the highest quality
data exists in the warehouse. The disadvantage is that discarded records must be manually reprocessed and fact
measures will not be included in the warehouse totals (at least initially). The second approach is to set the
dimension reference to a specific dimension entry that indicates an “Invalid” dimension record. In this scenario,

all fact records referring to invalid dimension entries are set to the same value and appear in a report as one group
of “Invalid” entries. The advantage of this approach is that fact records are indeed loaded and a data quality
percentage can easily be determined. The disadvantage of this approach is the inability to correct data once it is
loaded because the Natural Key reference is lost (unless the load process outputs invalid Natural Key values). The
third approach is inserting a new record into the dimension containing only the information that can be determined
at load time (the Natural Key, the new Warehouse Key, a post date, and maybe a record creation date). This
approach always produces a valid reference and a loaded fact record, but may fill a dimension with trash data.

If a dimension reference is “Missing” during fact table load, there are only two options available. The first option
is to discard the fact record. The advantages and disadvantages are the same as if the dimension entry were
“Invalid” (discussed previously). Another approach would be to set the dimension reference in the fact table

Paper 322 / Page 7

record to adimension entry that represents all missing records. Thisis the preferred approach since no
information is lost in the assignment (the Natural Key was NULL) and the fact measures are |oaded.

Data Load Recovery

An important aspect of automating the data load processis the ability to recover if one or more load processes do
not complete. A requirement of recovery isalog of the production load process. Some of the basic attributes
within aload log include job identifier, start time, end time, status, and last Natural Key committed. Records
loaded, records failed, and duplicate record counters can provide loading metrics if recorded.

Assuming the load failure was system-related and not due to dataissues or error thresholds, there are two
approaches to perform recovery without the threat of data duplication. Small data warehouse loads can be
contained within the rollback segment while other |oad processes are occurring and commit implicitly. When the
load volume exceeds the rollback segment capacity, periodic commits are required. Sort larger loads by a Natural
Key whose cardinality is sufficient to not fill the rollback segment and commit each time the key changes or by
some increment of that key. Make sure all records of a key value are processed prior to acommit and record the
last committed Natural Key value within the load log. At the start of each load, check the last |oad status and
begin after the recorded last commit key if the previous load did not finish.

Performance

A Data Warehouse Architect usually designs a system to address specific analytical business needs. During the
design process, the identified business questions form the measures and selection criteria of the front-end
functional requirements. From this knowledge, it is easy to determine the strengths and weaknesses of the design.
Itisnot likely that the warehouse will be at the exact level of granularity as all the queries run against it.

Likewise, it is not likely that every business question involves one and only one fact table. To avoid the
performance penalty of joining multiple fact tables or continually summarizing rows, use aggregation tables to
satisfy reporting or combined fact table requirements. Queries needed to summarize information into aggregation
tables can be optimized and the summary process can either be done as part of the dataload process or using
materialized views (ak.a. snapshots).

Data partitioning is a useful optimization tool that can dramatically reduce I/O when data access methods are

predictable. Partitioning isaso useful for archiving datathat is no longer needed in the warehouse. To determine

the best way to implement partitioning, you must first understand the data distribution, data access requirements,

and how partitioning works. Partitioning physically segments rows based on the value of one or more key fields.

The two algorithms available for determining how to distribute rows across available partitions are “Range” and
“Hash” partitioning. Range patrtitioning sets minimum and maximum key values that can reside in a physical
partition. This approach works well when data has a relatively even distribution across key values. Time, for
example, is a good candidate for a range patrtition key. Data warehouses that are time-oriented by nature (billing,
financial, sales, etc.) contain predictable fact table volumes when organized by time. A Range Partitioning
strategy by time may group fact records based on the month and year resulting in twelve partitions per year.
Archiving a month’s data would be as simple as taking a single partition off line and backing it to tape. Hash
partitioning transparently assigns each partition key to a specific partition. When the distribution of the partition
key is not predictable, choose the Hash Partition method to ensure a random distribution of rows across partitions.
A random distribution, however, is not necessarily an even distribution. If a few keys contain the majority of
information, then a few partitions will contain a majority of the rows. There is always the chance that one
partition will contain almost all the rows, thus negating any benefit.

Queries that constrain on partition keys only access those partitions that meet the specific criteria. This ability to
eliminate large segments of data from consideration is very powerful if queries are written to take advantage of

Paper 322 / Page 8

partition keys. One method to ensure that queries use partition keysisto create views for each partition or logical
groups of partitions that automatically do the proper constraining transparent to the user.

Since query performance is critical to adata warehouse, it isimportant to have an indexing and tuning strategy.

The architecture and characteristics of data warehouses make it possible to generalize some rules concerning the
initial indexes that should be created. Naturally, primary key indexes are necessary. Foreign key indexesin fact
tables are beneficial when dimension primary keys are driving the query. For example, if atime dimension isfirst
used to supply alist of time warehouse keys for an analysis (say, all Wednesdaysin the first calendar quarter of a
year), those key values are located in the fact table by the Foreign Key Index. Another frequently encountered

guery isidentifying the Warehouse Key for a dimension row given its Natural Keys. This query must be done

each time Natural Keys in the stage fact table are translated into Warehouse Keys during the load process. By
creating an index containing all of a dimension’s Natural Keys, the revision identifier, and the Warehouse Key,
this lookup can be performed solely within the index. Loading time is improved because the table is never
accessed.

Profile dimensions attributes that have a low cardinality are prime candidates for bit-mapped indexes that use
binary arithmetic to resolve matches. Since Profile dimensions lookups are based on all Natural Keys at load time,
a bit-mapped index can be incredibly fast. Placing bit-mapped indexes on individual low-cardinality columns of a
Profile dimension boosts performance on queries constraining on that Natural Key. Bit-mapped indexes are also
ideal for Profile dimensions because they provide indexing of NULL values. Beware of bit-mapped indexes

during load time because the overhead to maintain them during large data loads is costly. It is a good idea to drop
bit-mapped indexes prior to a load and rebuild them after a load if the load will add any new distinct values to the
columns.

One good point to remember is that data warehouse information isupdalied or deleted. This characteristic
allows the DBA to reduce the amount of free space left in data blocks to avoid row chaining. A good rule is to
leave the PCT FREE at 10 percent during development. Reduce the value for PCT FREE to zero percent for
known static dimensions (i.e. calendar), two to four percent for dimensions whose version indicator or effective
dates are updated, and zero percent for stage and fact tables (unless you require pre-processing or post-load
processing).

On occasion, you may determine that certain important queries are taking an excessive amount of time to return
results. Besides verifying the execution plan or updating the statistics, yoanakangtb reorganizing the rows

within the data table to minimize the number of blocks that are returned during queries. Space and time
permitting, this can be accomplished by performing a CREAT TABLE ... SELECT command by ordering the
selected rows by the same criteria as the slow performing query. Simply swap table names around and apply the
indexes and constraints to the newly organized table. This may negatively impact performance of other queries, so
use this option sparingly. This operation is only truly viable on manageable dimensions or fact table partitions but
can reduce the number of physical reads significantly.

Summary

The methods discussed in this paper apply to data warehouses of any business type. Hopefully, the paper has
provided some techniques that apply to your data warehouse implementation. Keep in mind that data warehouse
requirements change as businesses change and good data warehouses can invoke rapid business changes. A
simple design based on a business-oriented model is far more flexible than one that attempts to reproduce complex
source-system data transformations. Strive to let the data warehouse identify data problems, not correct them at
load time.

Paper 322 / Page 9

