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Introduction 

Data Warehouse DBAs, Data Administrators, Data Modelers and System Architects all realize the difficulty of 
designing data warehouses for both data loading and query response performance.  Unfortunately, these two 
optimization strategies are mutually exclusive.  Normalized transaction-oriented systems may ensure data loading 
performance and data integrity but are inherently slower at performing analytical queries.  On the other hand, de-
normalization and warehouse index strategies improve query performance but incur the penalty during data 
loading.  Even when a proper balance between load and query performance is achieved, consideration must be 
given to how efficient the design will be as the data warehouse grows in size, complexity, and usage.  In order to 
achieve the perfect balance between query performance and an ever-shrinking maintenance window, both the 
DBA and Data Administrator must share a common understanding of the complete life cycle of warehouse 
information.  This paper identifies warehouse business issues and provides design solutions that ensure continued 
performance, flexibility, and maintainability of your warehouse system.  The paper also discusses subtleties of 
dimensional modeling, data migration issues, and tuning strategies.  The overall design priority stressed is query 
performance.  The challenge is to architect the data warehouse and loading procedures to offset performance 
penalties inherent to loading a de-normalized design.  Identifying business requirements is critical to the success 
of a data warehouse project, but is out of the scope of this paper.  It is assumed that a thorough business 
requirement analysis has been completed and that the granularity, source system mapping, and attribute definitions 
satisfy the business needs. 

What’s in an Architecture? 

If asked the question, “Which is better, On-Line Transaction Processing (OLTP) or On-Line Analytical Processing 
(OLAP)” would your response be “OLTP”, “OLAP”, “Neither”, or “Both”?  The most accurate answer is all of the 
above, depending on your business perspective.  OLTP and OLAP are each designed to support different business 
requirements.  OLTP systems record business transactions and are designed for data load performance and data 
integrity.  OLAP systems are designed for reporting flexibility and query performance.  Trying to design a single 
system to perform both roles is destined to fail. 

OLAP architectures range from fully Relational OLAP (ROLAP) to fully Multi-dimensional (MOLAP).  A Hybrid 
mix between ROLAP and MOLAP is called HOLAP.  Of the three architectures, each has strengths, weaknesses, 
and scalability limitations that must be understood when determining the appropriate solution for business 
requirements.  In general, ROLAP is suited for larger-scale data warehouses where rapid query response time is 
not required but large volumes of sparse data are expected.  MOLAP is best suited for more focused data mart 
reporting where quick response time is critical to the business and levels of aggregation are restricted.  HOLAP 
architecture can exist anywhere between the ROLAP and MOLAP architecture, depending on business 
requirements.  Performance in HOLAP architecture is dependent on the whether the requested information is 
among the pre-aggregated data or not.  The focus of this paper is the enterprise-scale data warehouse consisting of 
multiple OLTP systems feeding a ROLAP dimensional data warehouse.  In this scenario, MOLAP, ROLAP, or 
HOLAP data marts can be created from the dimensional data warehouse to satisfy particular business needs.   Be 
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aware that choosing the wrong architecture for the right reporting requirements may lead to poor performance, 
inability to scale, or underachieving business objectives.  Any of those situations can result in a failed data 
warehouse. 

The Dimensional Data Model 

The Dimensional Data Model was popularized in Ralph Kimball’s books The Data Warehouse Toolkit (John 
Wiley and Sons, Inc 1996) and The Data Warehouse Lifecycle Toolkit (John Wiley and Sons, Inc. 1998) and many 
published articles.  A dimensional model is a ROLAP data warehouse design that optimizes reporting flexibility 
and query performance.  Fundamentally, the dimensional philosophy in this paper is based on the same modeling 
techniques written and taught by Mr. Kimball.  This paper extends those modeling concepts to handle various 
business situations.   

A dimensional data model reflects business processes rather than available business information.  When you hear 
of data warehouses needing redesign because business systems change, those warehouses were designed around 
available business information and not to support business processes. Dimensional architecture separates 
attributes into either normalized Business Measurements (Facts) or de-normalized Analysis Qualifiers 
(Dimensions).  Facts are grouped according to analytical value, business need, and level of aggregation.  Examples 
of a “Point of Sale” Fact group would include Gross Profit, Unit Price, and Quantity Purchased.  Dimension tables 
are typically groupings of descriptive attributes de-normalized to increase performance.  Since the growth and 
large volume occurs in Fact tables, additional space needed for de-normalized dimensions is usually insignificant. 
Examples of Dimensions groups include Time, Customer, Store, and Product. This architecture is referred to as a 
“Star Schema” because Dimension tables connect to centralized Fact tables much like points of a star.  Stars, like 
the one shown in Figure 1, are scalable designs providing flexibility and drill-down capabilities that is inefficient 
in normalized designs.    

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 1. Star Schema With Snowflakes 

Fact measurements can be constrained on any dimensional attributes and hierarchies, giving the warehouse 
flexibility.  The more dimension attributes and hierarchies there are, the more flexible the reporting can be.  A Star 
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derivation, called snowflake, occurs when dimension attributes are normalized into parent-child tables.  
Snowflakes are sometimes used when two indirectly related dimensions share attributes at different levels or when 
referential integrity is desired.  Snowflakes are shown as three lookup tables left of the Store dimension in Figure 
1.  OLTP modeling instinct causes first-time dimensional modelers to either classify dimension attributes as facts 
or blindly normalize dimensions into snowflakes.  

The primary reason to avoid snowflakes in data warehouses is query performance.  Small-scale data warehouses 
may not notice decreased query performance; however, degradation increases dramatically as dimensions and 
snowflakes grow in size.  During the design phase, it is critical to remember that implementing snowflakes to save 
space is hardly ever worth the performance penalty.  The amount of space saved is not significant unless 
dimensions performance is affected due to dimension size.  So when are snowflakes acceptable?  The author 
recommends using a derivation of snowflakes whenever lookup code referential integrity (RI) is desired or 
whenever the text defining a lookup code is not available at load time.  This derivation involves duplicating 
snowflake attributes within the dimension entity.  These attributes are populated at load time so queries never 
need join to the snowflake table, making query response times optimal.  If the RI is validated during a data staging 
process, the integrity constraint between Dimension and snowflake may be removed.   

If multiple dimensions reference a snowflake table, the snowflake should be maintained independently.  
Maintaining snowflake tables separately simplifies the load process of each referring “child” dimension because 
the stage records only need the snowflake key.  The other extreme to maintaining snowflakes is to include all 
snowflake attributes within the dimension load record.  The load process queries the snowflake for the exact 
permutation of its attributes.  If the snowflake lookup determines an exact record does not exist, a new record is 
added to the snowflake and the attributes are entered into the dimension record.  If the record is found, business 
rules determine how snowflake changes are handled.  This second approach makes the snowflake self-maintaining 
but one cannot enforce referential integrity of the load because a match is always guaranteed.  The concept of 
utilizing reference and self-maintaining tables is expanded on later in this section. 

The remainder of this paper refers to key fields within a data warehouse as either “Natural Keys” or “Warehouse 
Keys”.  Source system primary keys are collectively referred to as the Natural Keys of the dimension.  Natural 
Keys identify uniqueness in source system data at a specific point in time but are rarely primary keys in the 
warehouse because Natural Keys are not necessarily unique.  Natural Keys can be combined with versions keys or 
effective dates to provide uniqueness.  The more common approach is to utilize a sequence-generated Warehouse 
Key to represent the combination of Natural Key and version.   

Mr. Kimball identifies three distinct types of dimensions (known by dimensional modelers as “Type-1”, “Type-2”, 
and “Type-3”) based on how the dimension will represent history.  Three other dimension types: “Profile”, 
“Lookup”, and “Reference” are added to Mr. Kimball’s dimension types to satisfy most business applications. 

Type-1 Dimensions 

Type One dimensions are applied to dimensional business entities where only the current state of the dimension is 
relevant.  Changes to attributes in a Type One dimension are implemented as UPDATE statements and no history 
is maintained.  At first, business users may think that a Type One dimension fits their business model because they 
do not fully understand its consequences.   Consider an historic report summarizing sales by month based on 
customer zip codes within a Type One Customer dimension. Any report based on customer zip codes would be 
inconsistent every time a Type One customer changes postal regions.  A report for January 1999 that is run in 
February 1999 may not report the same sales numbers as a January 1999 report run in September or even March 
1999.  Changing history is against the Laws of Physics and should be against the Laws of Data Warehousing 
unless specific business rules require it.  
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Type Two dimensions contain a separate record for distinct attribute combination of the Natural Key.  All versions 
of a dimensional object are saved within the data warehouse by generating a sequential number (Warehouse Key) 
each time a new version of the Natural Key is added.  This approach ensures that fact entries relate to time-
consistent dimensional references.  If dimensional properties change quickly over time, it may be necessary to 
separate dynamic attributes from more static ones (a possible candidate for Profile Dimensions that will be 
discussed soon). 

Type-3 Dimensions 

Type Three dimensions handle changes by adding attributes within each record to indicate the previous, 
minimum, maximum, or original values (based on business rules).  The limitation of this approach is the inability 
to reconstruct history and the loss of potentially valuable information when the versions exceed the fixed number 
of historical values.  This author has never seen a pure business requirement for Type Three dimensions, but has 
utilized a hybrid Type Two and Type Three approach simply to increase performance. 

Profile Dimensions 

Profile dimensions are Type Two dimensions where all columns except the Warehouse Key are Natural Keys.  
This dimension type is typically used to group flags or finite-set attributes that classify or profile an object or state 
of an object.  An example of a Profile dimension is eight (8) single-character flags whose domain are “Y”, “N”, or 
NULL.  The maximum number of records in this dimension would be 38, or 6561.  Collectively, these flags 
represent a status or state of conditions.  With a little coding, Profile dimension can be made self-sufficient by 
automatically populating entries only when asked for a combination that is not already in the dimension.  If the 
maximum number is small or auto-loading is not an option, simply pre-populate the Profile dimension with all 
possible values prior to loading the data warehouse. 

Lookup Dimensions 

Lookup Dimensions contain attributes that represent static business characteristics.  These dimensions do not have 
a business requirement to represent unknown or missing data conditions, thus Natural Keys are usually the 
Lookup Dimension Primary Key.  Such dimensions are typically small and static in nature and won’t require an 
automated process to maintain them. Examples of lookup dimensions are state abbreviation codes supplied by the 
United States Postal Service or the names of Business Units within an organization.     

Reference Dimensions 

Reference Dimensions are similar to Lookup Dimensions, except they contain more records and may or may not 
be automatically maintained.  These dimensions contain a Warehouse Key because they must represent “Missing” 
or “Invalid” dimensional entries. “Missing” and “Invalid” dimensional entries are used when fact records 
reference incomplete or incorrect information. An examples of a Reference Dimensions is a Calendar Dimension 
which is populated one time, but must support error handling when source data is missing or corrupt. 

Depending on loading and query requirements, several columns can be added to fact and dimension table to 
improve flexibility and performance.   All fact and dimension tables should contain a record entry and post date 
attributes that will enable a data load to be backed out if needed.  Type two dimensions should contain columns 
that define an effective begin and end timestamp, and a flag that identifies records as current or historical.  
Effective dating can be used to reconstruct the status or statuses of a dimensional entity over time.  Remember that 
only the Warehouse Key is carried into a fact table.  The Warehouse Key ensures each fact record contains a time-
consistent dimensional reference but in itself does not supply the state of a dimension at a specific point in time.  
To accomplish point-in-time analysis requires both an effective begin date and the end user to structure the query 

Type-2 Dimensions 
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to return the maximum effective date that is less than a particular point in time.  Maintaining an indexed current 
version indicator flag allows current versions to be identified without performing index range scan operations (an 
index on the Natural Key and current version flag is still not unique since there can be multiple records that are not 
current).  

The last design consideration supports specific analyses without involving a fact table.  This approach is called 
Dimensional Browsing and is available when all the information to answer a question resides within dimension 
tables.  Consider a data model containing a Sales Representative and a Customer dimension with a need to support 
a business question such as: 

How often are sales representatives responsible for customers outside of their district? 

Answering this business question would involve joining the Customers and Sales Representatives dimensions 
through a sales fact table for unique sales representative and customer relationships, even though no fact-table 
attributes are needed.  This analysis could be supported without involving the fact table by creating a combined 
(a.k.a. “Mini”) dimension of customer and sales representative attributes.  While creating such a combined 
dimension must include the fact table, the query is performed only once (or each time the dimension is updated) 
and the Mini Dimension is much smaller because it contains only distinct combinations. 

The Loading Process  

The most challenging aspect of data warehouse development is loading data.  Since business information typically 
exists on multiple non-integrated operational systems, information must be consolidated into a single point of 
record.  The challenge lies in identifying the best source of record, standardizing codes and formats, handling data 
anomalies, and identifying data quality issues. 

Flexibility 

A fundamental concept that greatly simplifies data warehouse projects and ongoing maintenance is the use of data 
staging areas.  Upon completion of the logical database design, data modelers have a good idea of the attributes 
and sources needed to populate the warehouse.  At that time, a data staging area can be defined that will serve as a 
dividing line between source systems and the warehouse.  Stage should contain only the information needed to 
populate the warehouse and be organized to logically group information by type, not source system format.  If a 
source record contains customer dimension and fact attributes, the source record should be split into two extracts 
instead of having a single stage table feed both the dimension and fact tables.  Source system experts can begin to 
map the data in the source systems to this specification before the physical data warehouse is created.  As the 
design becomes physical, warehouse architects map attributes from Stage to the production warehouse.  Notice 
that the two processes are performed independently of each other.  This allows the source systems or the 
warehouse design to change without affecting processes or programs on the other side of the data stream. 

Stage rarely contains indexes or constraints.  Since the load processes from Stage are full table scans and the data 
presumably has integrity within the source system, indexes and constraints are unnecessary performance drains.  
Transformations occur during extraction and business rules are applied during the stage to the production 
warehouse load.  Naturally, there may be exceptions to these rules but the overall goal should be to maximize data 
throughput.   

Do not be tempted to pre-assign warehouse keys during source system extraction or stage area loading, as some 
keys may change based on load sequence.  Dimension references from fact tables are very time dependent.  If 
dimension keys are assigned prior to fact table loading, any dimension table updates that occur prior to the fact 
load may invalidate the dimension. 



Paper 322 / Page 6 

Source system extracts should be written with the sole purpose of populating the Data Warehouse Stage area.  
Network traffic and the data-loading window can be significantly affected if extracts contain more rows or 
columns than necessary to satisfy stage requirements.  The source system extract is also the most logical place to 
imbed business rules that apply only to a particular system.  Standardizing a gender code that is “M” or “F” in one 
system, “0” or “1” in another, and “Male” or “Female” in a third system should be done during each extract 
process.  The Extract Specification document should set the standard format. 

Maintainability 

Standardizing load processes reduces the overall development and maintenance effort.  Determine the business 
rules necessary to handle the consolidation, transformation, and loading of each warehouse table prior to 
implementing any.  Loading processes will be similar for objects that possess the same functional qualities (like all 
Profile Dimensions). 

Sequence-Generated Warehouse Keys are the primary keys of Type Two Slowly Changing Dimensions and Profile 
Dimensions.  The dimension loading process first checks if the Natural Keys exist in the dimension and the record 
is loaded if the Natural Keys are not found.  If Natural Keys do exist and any other record attribute changed (Type 
Two dimensions only), a new entry must be created to represent that record version.  Lastly, if the Natural Keys 
exist but no attributes have changed, the record is a duplicate and is discarded.  Profile Dimension load process is 
illustrated in Figure 2 and Type Two Dimension load process is illustrated in Figure 3. 

 

Figure 2. Profile Dimension Loading Process 

Figure 3. Type Two Dimension Loading Process 
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Figure 4. Fact Table Loading Process 

Loading Issues 
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over a five-year period, a Distribution Center Clerk at a transportation company entered the same equipment code 
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all fact records referring to invalid dimension entries are set to the same value and appear in a report as one group 
of “Invalid” entries.  The advantage of this approach is that fact records are indeed loaded and a data quality 
percentage can easily be determined.  The disadvantage of this approach is the inability to correct data once it is 
loaded because the Natural Key reference is lost (unless the load process outputs invalid Natural Key values).  The 
third approach is inserting a new record into the dimension containing only the information that can be determined 
at load time (the Natural Key, the new Warehouse Key, a post date, and maybe a record creation date).  This 
approach always produces a valid reference and a loaded fact record, but may fill a dimension with trash data. 

If a dimension reference is “Missing” during fact table load, there are only two options available.  The first option 
is to discard the fact record.  The advantages and disadvantages are the same as if the dimension entry were 
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record to a dimension entry that represents all missing records.  This is the preferred approach since no 
information is lost in the assignment (the Natural Key was NULL) and the fact measures are loaded. 

Data Load Recovery 

An important aspect of automating the data load process is the ability to recover if one or more load processes do 
not complete.  A requirement of recovery is a log of the production load process.  Some of the basic attributes 
within a load log include job identifier, start time, end time, status, and last Natural Key committed. Records 
loaded, records failed, and duplicate record counters can provide loading metrics if recorded.   

Assuming the load failure was system-related and not due to data issues or error thresholds, there are two 
approaches to perform recovery without the threat of data duplication.  Small data warehouse loads can be 
contained within the rollback segment while other load processes are occurring and commit implicitly.  When the 
load volume exceeds the rollback segment capacity, periodic commits are required.  Sort larger loads by a Natural 
Key whose cardinality is sufficient to not fill the rollback segment and commit each time the key changes or by 
some increment of that key.  Make sure all records of a key value are processed prior to a commit and record the 
last committed Natural Key value within the load log.  At the start of each load, check the last load status and 
begin after the recorded last commit key if the previous load did not finish.   

Performance 

A Data Warehouse Architect usually designs a system to address specific analytical business needs.  During the 
design process, the identified business questions form the measures and selection criteria of the front-end 
functional requirements.  From this knowledge, it is easy to determine the strengths and weaknesses of the design.  
It is not likely that the warehouse will be at the exact level of granularity as all the queries run against it.  
Likewise, it is not likely that every business question involves one and only one fact table.  To avoid the 
performance penalty of joining multiple fact tables or continually summarizing rows, use aggregation tables to 
satisfy reporting or combined fact table requirements.  Queries needed to summarize information into aggregation 
tables can be optimized and the summary process can either be done as part of the data load process or using 
materialized views (a.k.a. snapshots).   

Data partitioning is a useful optimization tool that can dramatically reduce I/O when data access methods are 
predictable.  Partitioning is also useful for archiving data that is no longer needed in the warehouse.  To determine 
the best way to implement partitioning, you must first understand the data distribution, data access requirements, 
and how partitioning works.  Partitioning physically segments rows based on the value of one or more key fields. 
The two algorithms available for determining how to distribute rows across available partitions are “Range” and 
“Hash” partitioning.  Range partitioning sets minimum and maximum key values that can reside in a physical 
partition.  This approach works well when data has a relatively even distribution across key values.  Time, for 
example, is a good candidate for a range partition key. Data warehouses that are time-oriented by nature (billing, 
financial, sales, etc.) contain predictable fact table volumes when organized by time.  A Range Partitioning 
strategy by time may group fact records based on the month and year resulting in twelve partitions per year.  
Archiving a month’s data would be as simple as taking a single partition off line and backing it to tape.  Hash 
partitioning transparently assigns each partition key to a specific partition.  When the distribution of the partition 
key is not predictable, choose the Hash Partition method to ensure a random distribution of rows across partitions.  
A random distribution, however, is not necessarily an even distribution.  If a few keys contain the majority of 
information, then a few partitions will contain a majority of the rows.  There is always the chance that one 
partition will contain almost all the rows, thus negating any benefit. 

Queries that constrain on partition keys only access those partitions that meet the specific criteria.  This ability to 
eliminate large segments of data from consideration is very powerful if queries are written to take advantage of 
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partition keys.  One method to ensure that queries use partition keys is to create views for each partition or logical 
groups of partitions that automatically do the proper constraining transparent to the user.   

Since query performance is critical to a data warehouse, it is important to have an indexing and tuning strategy.  
The architecture and characteristics of data warehouses make it possible to generalize some rules concerning the 
initial indexes that should be created.  Naturally, primary key indexes are necessary.  Foreign key indexes in fact 
tables are beneficial when dimension primary keys are driving the query.  For example, if a time dimension is first 
used to supply a list of time warehouse keys for an analysis (say, all Wednesdays in the first calendar quarter of a 
year), those key values are located in the fact table by the Foreign Key Index.  Another frequently encountered 
query is identifying the Warehouse Key for a dimension row given its Natural Keys.  This query must be done 
each time Natural Keys in the stage fact table are translated into Warehouse Keys during the load process.  By 
creating an index containing all of a dimension’s Natural Keys, the revision identifier, and the Warehouse Key, 
this lookup can be performed solely within the index.  Loading time is improved because the table is never 
accessed.   

Profile dimensions attributes that have a low cardinality are prime candidates for bit-mapped indexes that use 
binary arithmetic to resolve matches.  Since Profile dimensions lookups are based on all Natural Keys at load time, 
a bit-mapped index can be incredibly fast.  Placing bit-mapped indexes on individual low-cardinality columns of a 
Profile dimension boosts performance on queries constraining on that Natural Key.   Bit-mapped indexes are also 
ideal for Profile dimensions because they provide indexing of NULL values.  Beware of bit-mapped indexes 
during load time because the overhead to maintain them during large data loads is costly.  It is a good idea to drop 
bit-mapped indexes prior to a load and rebuild them after a load if the load will add any new distinct values to the 
columns. 

One good point to remember is that data warehouse information is rarely updated or deleted.  This characteristic 
allows the DBA to reduce the amount of free space left in data blocks to avoid row chaining.  A good rule is to 
leave the PCT FREE at 10 percent during development.  Reduce the value for PCT FREE to zero percent for 
known static dimensions (i.e. calendar), two to four percent for dimensions whose version indicator or effective 
dates are updated, and zero percent for stage and fact tables (unless you require pre-processing or post-load 
processing).  

On occasion, you may determine that certain important queries are taking an excessive amount of time to return 
results.  Besides verifying the execution plan or updating the statistics, you may look into reorganizing the rows 
within the data table to minimize the number of blocks that are returned during queries.  Space and time 
permitting, this can be accomplished by performing a CREAT TABLE  … SELECT command by ordering the 
selected rows by the same criteria as the slow performing query.  Simply swap table names around and apply the 
indexes and constraints to the newly organized table. This may negatively impact performance of other queries, so 
use this option sparingly.  This operation is only truly viable on manageable dimensions or fact table partitions but 
can reduce the number of physical reads significantly. 

Summary 

The methods discussed in this paper apply to data warehouses of any business type.  Hopefully, the paper has 
provided some techniques that apply to your data warehouse implementation.  Keep in mind that data warehouse 
requirements change as businesses change and good data warehouses can invoke rapid business changes.  A 
simple design based on a business-oriented model is far more flexible than one that attempts to reproduce complex 
source-system data transformations.  Strive to let the data warehouse identify data problems, not correct them at 
load time. 


