
Managing Time in the Data Warehouse
by Dr. Barry Devlin, IBM

Of the many design issues that
arise when building a data ware-

house, one of the least understood is
the question of handling the time di-
mension. The historical nature of the
warehouse is widely accepted; how-
ever, a common theoretically-based
but still practical approach is lack-
ing. This article explores some of the
most common aspects of the problem
and lays out a number of principles
for treating time successfully in the
warehouse.

Data Warehouse Structure —
A Review

Before looking at time manage-
ment in the warehouse, it is ap-

propriate to first review the logical
structure of the data warehouse.
Throughout this article, I will use the
three-layer model of the data ware-
house. This structure is now widely
accepted as the optimal approach to
providing consistent and reliable
management information throughout
the organization.2

The lowest layer, used by the op-
erational applications is real-time

data. Real-time data is up-to-the-
second data and used to run the
business. The top layer, used by in-
formational applications, is derived

data and is used to manage the busi-
ness. It may exist at a detailed or
summary level, and it is used in a
read-only mode.

The key to the three-layer architec-
ture, as shown in Figure 1, is the rec-
ognition that there are two steps in
the transformation from real-time
data to derived data.6

The first step brings the real-time
data to a common base of reconciled

data. This is a special category of
data, built by only removing inconsis-
tencies and errors in the source

data. It is stored at a detailed level,
and is the definitive, complete and
historical record of the real-time data
across the whole enterprise. This
store is known as the business data

warehouse (BDW).
The second step addresses the dis-

parate needs of end users, and de-
rives the subsets or aggregations of
data they need. This derived data is
sourced only from the BDW and is
stored in business information ware-

houses (BIWs).
The data warehouse, consisting of

the BDW and the set of derived
BIWs, can thus be seen as a logical
set of data, used for managing the
business, that has been aligned to
the overall data needs of the busi-
ness. It may consist of many physi-
cal copies of that data, optimized for
particular uses, but its key feature is
that it is structured in such a way
that it can be controlled and man-
aged. This structure and the ration-
ale for it is described in more detail
in References 3, 4 and 7.

Business or Pleasure?

The warehouse exists to help man-
age the business. Because a busi-

ness changes over time, the business
data must represent that change,
and must therefore contain a time
element. In fact, there are often
many different time elements re-
quired. However, the warehouse it-
self, like any other application, must
also be managed as a function of
time. This leads to the immediate
conclusion that time in the data
warehouse is not just the fourth di-
mension, but also the fifth, sixth and
so on.

First consider time from a busi-
ness viewpoint. Any time of interest
to the business is recorded in the
business data itself. For example, a
personnel planning application

stores dates when promotions are
planned. These dates may be in the
past or in the future and are part of
the business data of that application.
The valid business time axis meas-
ures the times the planned dates are
entered or changed and not the
planned dates themselves.1 Of
course, when the promotions occur,
these events also appear in the valid
business time.

When analyzing and tracking busi-
ness performance, valid business
time should clearly form the basis for
measuring time and assigning peri-
ods of validity to business events or
statuses of interest. In some cases,
however, the valid business time is
not recorded in the operational sys-
tem, and an alternative such as busi-

ness transaction time or operational

database time must be used. This is
the time when a business event en-
ters or is recorded in the operational
system. These times for an event can
be the same or later than the valid
business time.

BDW database time is the time
when the business event is written
into the warehouse. With very rare
exceptions, this time is later — often
considerably later — than the busi-
ness transaction time.

Of these four times, all are system
generated with the notable exception
of valid business time, which must
be input by a user.

The decision about which time di-
mension to use and when to use it
depends not only on business needs,
but also on the way time is managed
in the operational environment, and
on the technical implementation of
warehouse population. In particular,
it is vital to distinguish between the
use of time elements to a) track the
business (valid business time is the
real measure here, although busi-
ness transaction time or operational

InfoDB Volume 11 Number 1



database time are often used as sur-
rogates) and b) to manage the tempo-
ral integrity of the warehouse (BDW
database time is the key in this case).

Tracking the Use of Time in
the Business

Traditional data modeling and ap-
plication design approaches fo-

cus almost exclusively on a static
view of the world. As a result, the
temporal aspects of relationships are
effectively ignored in traditional data
modeling. To include time in model-
ing, events (which change the rela-
tionships between entities over time)
must be included in the model. A
number of attempts have been made
to extend the traditional data model
to include events.5 Today’s modeling
tools, however, incorporate little or
none of this functionality, and data-
base systems provide no explicit sup-
port for time dependency. The result
is that designers usually add time
dependency of data to application
designs largely as an afterthought.

A data warehouse design, however,
must explicitly consider the temporal
aspects of the data it contains, be-
cause it must, by definition, provide
a historical view of the business. The
most widely used method is the appli-
cation of timestamps to the data.
Since data changes at the field level,
it is possible to represent time at
that level, or at any of the higher lev-
els in the structure, such as re-
cords/rows or file/table, depending
on the granularity (detail) required.
Field-level timestamping generates
huge volumes of timestamp data and
is seldom needed. The usual ap-
proach is to timestamp data at the
record/row level, where the record
timestamp is updated whenever any
field in that record changes. From a
business viewpoint, this approach
meets almost all needs for tracking
time, and is the preferred approach
in the BDW.

Timestamping at file or table level
updates the timestamp whenever
any record changes. This approach is
not appropriate for controlling and
auditing the data. It is, however,
often the level at which end users
wish to track the currency of their
data. Snapshots, which represent a
view of the business at some point in
time, are implicitly or explicitly times-
tamped at a file/table level.

Temporal Data Structures

Timestamps allow the mainte-
nance of temporal data. When

considering temporal data we need to
understand how time is reflected in a
database, how this relates to the
structure of the data, and how a new
event affects existing data. There are
two basic approaches: transient data
and periodic data. A special case of
periodic data, known as a snapshot,
also needs to be considered. Figure 2
will be used to explain transient data
and periodic data. In the figure, each
record contains a key field k and a
timestamp t.

Transient Data
The key characteristic of transient

data is that alterations to and dele-
tions of existing records physically
destroy the previous data content.
Records can be added (for example,
record k6 at time t2 in Figure 2) and
deleted (record k3 at time t3). There
is, however, no evidence in the data
after time t3 of the previous contents
of record k3, or indeed that it ever
existed. Records can also be changed
— as in the case of deletion, the
previous states of changed records
are lost. This type of data is typical of
that found in the operational
environment.

Periodic data
With periodic data, once a record is

added to the store, it is never physi-
cally deleted, nor is its business con-
tent ever physically modified. Rather,
new records are always added, even
for updates to, or deletions of, exist-
ing records. Thus, at time t2 in
Figure 2, record k3 is updated, but
rather than the previous value C

Derived
data

Reconciled
data

Business Information Warehouses

Business Data Warehouse

Staging
BIWs

Data Warehouse

User
BIWs

Operational systems

Real-time
data

Figure 1. The logical architecture of the data warehouse

InfoDB Volume 11 Number 1



being overwritten with a new value P,
a complete new record with the same
“key” k3, but with a different times-
tamp t2 is added. As a result, the
timestamp is an integral part of the
key to the record. Instead of deleting
a record, this fact is handled by the
addition of a specially marked re-
cord. In the figure, record k4 is “de-
leted” at time t3 by the addition of a
record indicating this key value is no
longer valid. Addition of new records
is identical to that shown earlier.

Periodic data thus contains a com-
plete record of the changes that have
occurred in the data. Periodic data is
persistent in nature because it pro-
vides a permanent record of the data
and its changes.

Periodic data is found in the real-
time data of operational systems
where a record of the previous states
of the data is important. Thus, bank
account systems and insurance pre-
miums systems often use this ap-
proach. Order-entry systems, on the
other hand, are usually based on
transient data. This choice reflects
different business needs for tracking
and auditability. However, in almost
all operational systems, the duration
for which this persistent data is held
is relatively short, due to perform-
ance and/or storage volume con-
straints. This kind of data may be
termed semi-periodic data.

Periodic data is also found in the
derived data layer of a data ware-
house where it is used to support
trend analysis of historical data. The
reconciled data layer consists en-
tirely of periodic data because of its
role as the historical record of the
business.

Snapshot Data
Snapshot data is a stable view of

the data as it exists at some point in
time. It does not contain any record
of changes in the data that resulted
in its arrival at this state. If it is up-
dated, it may be totally replaced, or

at a detail level, records may be
changed in a similar way to that in
which transient data is changed.

This type of data occurs most often
in the derived data layer of a data
warehouse. Snapshots usually repre-
sent the business data at some time
in the past, and a series of snap-
shots can provide a view of the his-
tory of the business. However,
predictive or planned business states
are also snapshots, in this case rep-
resenting the future.

The Structure of Periodic
Data in the BDW

The data in the BDW is periodic in
nature, representing the history

of the changes in the business data
over a prolonged period of time. The
standard approach to storing this
periodic data is to use timestamped
status and event records. There are,
however, a variety of schemes to
maximize the efficiency of time-
stamps.

Each instance of a business entity,
such as an order or a customer, is
represented in a warehouse by a set
of records, each of which has the
same business key, but is differenti-
ated by the timestamp(s) used as
part of the key. These timestamps

show the period of validity of a par-
ticular record. For the moment, we
assume that the period of validity is
based on event timings from a busi-
ness point of view rather than from a
technical or database view. We will
return to this assumption later.

Using a Single Timestamp
The simplest approach, shown in

Figure 3, is to implement a single
timestamp field, start time, identify-
ing the time at which a record be-
came valid. A record is then deemed
to be invalid when there is another
record with the same business key
and a later timestamp.

This structure is ideal for event
data where the timestamp represents
the time at which the event took
place. Account transaction data in a
bank is a good example of event data.

For status data, however, where
the outcomes of events, rather than
the events themselves, are stored,
the single timestamp approach pre-
sents a problem for two types of rela-
tively common query.

1. A query that needs to access cur-
rent data. In a single timestamp
scheme, the only way to identify
current records is to find the

k1 t1

k5
k4

k3
k2

t1
t1

t1

t1

A

E
D

C
B

k1 t1

k5
k4

k3
k2

t2
t1

t2

t1

A

E
Y

C
X

k6 t2 F

k1 t1

k5
k4

k2

t3

t2

t1

A

E
Y

X

Z

k6 t2 F

k1 t1

k5
k4

k3
k2

t1
t1

t1

t1

A

E
D

C
B

k1 t1

k4
k3

k3
k2

t2
t1

t1

t1

A

D
P

C
B

k5 t1 E
k6 t2 Q

k1 t1

k4
k3

k3
k2

t2
t1

t1

t1

A

D
P

C
B

k5 t1 E
k6 t2 Q

k4 t3 D

Transient data

Periodic data

Time = t1 Time = t2 Time = t3

x

Figure 2. Transient and periodic data

InfoDB Volume 11 Number 1



latest timestamp of the periodic
set, which is an inefficient
process.

2. A query that builds a view of the
data at a particular time in the
past. To support this query, the
period of validity of each record
must be known, in order to com-
pare it with the required time.
With the single timestamp ap-
proach, the end of the period of
validity of one record can only be
found from the next record in the
periodic sequence, again an
expensive process for relational
databases.

Using Two Timestamps
To address the above problems, a

second timestamp can be added to
each record, as shown in Figure 4.
This second timestamp, end time,
identifies the end of the period of va-
lidity of the record. In this scheme,
the current record is identified by
some special value in the end time
field.

Setting the end time for a record
takes place when the record super-
seding it is written. The need to find
and update the superseded record
thus introduces an overhead into the
update process. For example, in Fig-
ure 4, when record k1,t2 is added to
the BDW, the update process must
locate record k1 with a null value for
end time, and replace the value of
end time in that record with t2. The
performance improvements in retriev-
ing data, however, compensate for
this added update overhead.

Using Additional Fields
In a perfect world, a scheme using

two timestamps would be sufficient.
Other problems may arise, however.
Operational applications are often de-
signed without consideration for the
consequences of storing history infor-
mation. One important effect of this
omission can be seen in the use of
business keys. In some businesses,

key values are reused over time. An
example of this is the use of order
numbers in a business with a short
selling cycle. These are generated
within a fixed range, which is then re-
cycled after some period of time. In
this case, carrying these order num-
bers into a periodic warehouse does
not allow a distinction between sets
of related records for different orders.

This problem can be addressed
without impact on the operational ap-
plication by introducing another
timestamp, initial time, on each re-
cord, as shown in Figure 5. Initial
time identifies the time at which the

sequence of related business events
began, and is therefore equal to the
start time of the first record of the se-
quence. Within the periodic data, the
business key is a composite of the op-
erational business key and the initial
time.

At this stage, one might be
tempted to ask if more than three
timestamps could possibly be re-
quired. One final problem remains
with these schemes — the difficulty
in recognizing what action has
caused a particular record to be
created. This is particularly needed
for records that represent the

Figure 3. Periodic data using start times

K1

K1

K2

K2

T1

T2

T4

T5

T2

T5

. . .

. . .

. . .

. . .

Business
Key

Start
Time

End
Time

Business
Data

Figure 4. Periodic data using end times

K1

K1

K2

K2

T1

T2

T4

T5

. . .

. . .

. . .

. . .

Business
Key

Start
Time

Business
Data

InfoDB Volume 11 Number 1



completion of a sequence of records,
in other words, the deletion of a par-
ticular instance of a data entity. In
periodic data, no record is ever physi-
cally deleted, but is instead marked
as no longer valid.

One approach is to designate a spe-
cial value of end time to represent
this state. A more general approach
is to introduce one final field — not a
timestamp, but a flag — the action

flag, to indicate the action in the op-
erational system that created each of
the records. As Figure 5 shows, this
flag can take one of three values:

• A — representing the addition of a
new data instance (the first record
in the sequence)

• C — a change or update of an exist-
ing data instance

• D — the deletion of a data instance
(the last record in the sequence)

This approach represents probably
the most functionally rich solution,
catering to all possible data access
and technical requirements.

Choosing the Appropriate
Structure

The structures described above
represent a variety of possible ap-
proaches to representing history in
the BDW. Except for the start time
timestamp, each is optional. Their
use depends mainly on the abilities
of the BDW and BIW population func-
tions. End time and initial time can
both present difficulties in populat-
ing the BDW. The use of just a start
time can cause performance difficul-
ties in selecting particular subsets of
data in populating the BIW. A combi-
nation of start time and end time,
supported by an action flag, gener-
ally provides an efficient structure
for status data in the BDW. Event
data can generally be managed using
a start time and either an end time
or an action flag.

Conclusions

Our journey through time in the
data warehouse has led to a

number of conclusions.

1. The temporal aspects of business
data must be distinguished care-
fully from those relating to the
control and management of the
data warehouse. Failure to do so
will lead to significant difficulties
for both end users and IS person-
nel. If data warehouse control
timestamps are to be used as sur-
rogates for business times, the
implications for end users must
be clearly understood.

2. In the design of the BDW, temporal
aspects must be considered at an
early stage. At a logical level, the
business impact of (and interest
in) events that alter data values
must be analyzed closely. At a
physical level, the timestamps re-
quired to control and manage the
data warehouse need to be de-
fined up front.

3. In order to map data from a par-
ticular operational system into
the data warehouse, the designer

must understand the concepts of
transient and periodic data, and
how the operational system han-
dles time dependency.

Experience of a large number of
data warehouse implementations has
led to the approach outlined above.
Applying these principles leads to a
comprehensive and well-controlled
implementation of historical data in
the BDW. Such a well-structured
BDW in turn is the ultimate source
of information needed by any busi-
ness analysis of a temporal nature.

About the Author

Dr. Barry Devlin is among the fore-
most authorities on data ware-

housing. He defined IBM Europe’s
own data warehouse architecture in
the mid-1980s, and subsequently
published the seminal article on the
subject in 1988.2 He continues to
work at the leading edge of data ware-
house architecture and implementa-
tion. Barry is a widely respected
writer and lecturer on the subject
throughout the world. Addison
Wesley published his comprehensive
book on the subject in October
1996.4

. . .

. . .

. . .

. . .

K1 T1 T3

T4K1 T5

T1 T1K1 T2

K1 T1 T2 T3

T4 T4K1 T5

. . .

A

C

D

A

C

Business
Key

Initial
Time

End
Time

Business
Data

Start
Time

Action
Flag

Figure 5. Periodic data using initial time and status flags

InfoDB Volume 11 Number 1



InfoDB Volume 11 Number 1


